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A brief introduction to Namecoin

● Like the DNS, but secured by a blockchain.
● Uses the “.bit” top-level domain.
● Names are represented by special coins.
● First project forked from Bitcoin (in 2011; Bitcoin was created in 

2009).
● Original focus of developers was on censorship-resistance.

– We later became interested in PKI use cases (e.g. for TLS) as well.



  

Getting rid of Certificate Authorities (CA’s) in TLS

● TLS trusts over 1000 certificate authorities.
– CA’s get compromised.

● DigiNotar (allegedly by Iranian intelligence).

– CA’s achieve Too Big To Fail status.
● Startcom, AKA the Martin Shkreli of Internet security.

● Subject of this talk: does Namecoin help us replace CA’s?



  

A brief survey of proposed
solutions to the CA problem

● Trust agility (Convergence)
● A smaller set of trusted parties (DNSSEC/DANE)
● Limit window of opportunity for attackers (HPKP and CT)
● More accountability after a compromise (HPKP, CAA, and CT)



  

Were those really solutions?

● Note what's missing here: all of these “solutions” still allow a set 
of trusted parties to authorize MITM attacks.

● What we want is to be certain that a MITM attack will be 
detected during the TLS handshake without relying on a 
trusted 3rd party.

● Is this actually possible?



  

DNSSEC / DANE

● The DNS community long ago realized that a secure version of DNS 
could be used instead of CA’s.
– Website owner puts a TLS certificate fingerprint in their DNS record.

– End user’s browser makes sure that the certificate matches the fingerprint 
from DNS.

– Standardized by IETF as DANE.

– If we assume that DNS is secure (e.g. via DNSSEC), this should be secure.

● We don't trust the DNS, but maybe we do trust Namecoin to do what 
the DNS is supposed to do.



  

Adapting DANE to Namecoin

● Since Namecoin is interoperable with DNS, we can put TLS 
certificate fingerprints in Namecoin according to the DANE 
spec.

● A Namecoin-DNS bridge (running on localhost) signs the 
records with a bridge-generated DNSSEC key.

● User configures Unbound to use the bridge’s DNSSEC key for 
the .bit zone.

● Should be as simple as that, right?



  

Web browsers don’t support DANE

● No major web browsers do DNS lookups for DANE records.
● Some browsers intend to (eventually) support stapling of DANE 

records in the TLS handshake.
– Useless for Namecoin, since for Namecoin the DNSSEC trust root is 

different per user.
– Useless for preventing MITM’s, since this is only a positive override.
– No ETA on browser support even for this.

● Chromium security team has flat-out refused to allow browser 
extensions to override cert verification results.



  

Overview of existing override methods
that don't require browser vendor cooperation...
● Intercepting proxy, e.g. Convergence.

– Hello SuperFish!

● Browser extension API's, e.g. DNSSEC-Validator.
– Leaks cookies and more.

● Shared library hooks, e.g. CertShim.
– Messes with unstable data structures (I don't trust this method to not 

corrupt memory).

● TL;DR all of these have problems.



  

Can we jerry-rig mainstream browsers 
to use Namecoin for TLS?

● Note there are 2 independent problems:
– Positive override: a self-signed certificate needs to be accepted if it 

matches the Namecoin blockchain.

– Negative override: a CA-signed certificate needs to be rejected if it 
doesn’t match the Namecoin blockchain.



  

TLS: Positive Overrides

● If you manually add a self-signed certificate to a browser’s trust 
store, it will be accepted.

● But this is a horrible idea for many reasons.
– What if the certificate is also valid as a CA?  Now it can impersonate 

other websites!

– What if the certificate has multiple hostnames?  Ditto!

– Requires us to know the full certificate contents before we start the 
TLS handshake.  TLS certificates are big – they won’t fit into a 
Namecoin record!



  

● <ryan-c> how small can we actually make a self-signed ecdsa cert?
● <Jeremy_Rand>Probably not small enough to fit in a Namecoin name
● <ryan-c> maybe not
● <ryan-c> er maybe  it is
● <ryan-c> one sec
● <ryan-c> let me do some wizarding
●  * Jeremy_Rand loves it when ryan-c puts on his wizard hat
● <ryan-c> Jeremy_Rand: the cert may too big, but we should consider 

cheating
● <ryan-c> Jeremy_Rand: yes, we can fit a self-signed ecdsa cert by 

cheating



  

Dehydrated Certificates

● Ryan's solution: starting with only a public key, validity period, 
signature, and hostname (called a dehydrated certificate), you 
can deterministically construct a valid certificate by filling a 
template (rehydrating the certificate).
– Pubkey, validity period, and signature go in the Namecoin value.

– Hostname determined by what Namecoin name is being looked up.

– Use ECDSA instead of RSA – much smaller keys and signatures.



  

Efficiency Advantages of Dehydrated Certificates

● In theory: 104 bytes per certificate.
● In practice: 255 bytes.

– Due to JSON/base64 encoding, no compressed pubkeys, other 
compromises.

● Before dehydration: 464 bytes binary, 620 bytes base64.
● A Namecoin name can hold 520 bytes (which also needs to 

include IP addresses and other DNS records).



  

Security Advantage of Dehydrated Certificates

● All of the potentially dangerous x509 fields (e.g. the CA bit) are controlled by 
the template, not the attacker.

● The only fields the attacker controls are the public key, the validity period, 
and the signature.
– Attacker-controlled public keys are already standard in the TLS ecosystem – clearly 

safe.

– Validity period's only potentially harmful effect is disincentivizing key rotation – only 
impacts the hostname who chose that validity period.

– The signature check normally passes, and the only thing an attacker-controlled 
signature can change is making the signature check not pass – doesn't accomplish 
anything useful attack-wise.



  

Implementing Dehydrated Certificates

● I didn't want to use OpenSSL and friends.
– API is impossible to use correctly.

– I don't trust the memory safety of C/C++ code.

● Go has a nice x509 library.
– API is simple.

– Go is memory-safe.

– Conveniently, Namecoin already was using Go for our DNS bridge 
implementation. 



  

Implementing Dehydrated Certificates (2)

● Go's x509 API was actually a little bit too high-level – no publicly 
exported functions to splice a signature into a certificate.

● I ended up writing a “go generate” script that creates a copy of 
the standard library's x509 package, with an extra function 
added that uses private functions to splice the signature.

● Sadly, Go's standard library doesn't support compressed public 
keys for these curves.  (So we're not saving as much space as 
we could be.)



  

Hooking it together

● When a DNS request for a Namecoin domain name is received 
by the Namecoin-DNS bridge on localhost, the dehydrated 
certificate is rehydrated into DER format, and injected into the 
trust store.
– On Windows, using CryptoAPI certutil.

– On GNU/Linux, using NSS certutil.

● Takes effect immediately for CryptoAPI and sqlite-based NSS.



  

(Side note: CryptoAPI reverse-engineering)

● CryptoAPI's certutil is slow, and often requires Administrator privileges.
● Turns out that CryptoAPI internally stores its cert store as blobs in the 

Windows Registry.
– … with a custom undocumented binary blob format, not standard DER.

– … and the reason for this custom format existing is so that hash operation results 
can be cached.

– RSA and ECDSA operations aren't cached by this format.

– Yes, this is an absurd design.

● Anyway, I wrote some Go code that can create these blobs and add them to 
the Registry – now the code is fast and doesn't need Administrator privs.



  



  

TLS: Negative Overrides

● So we got self-signed certs to be accepted if they match the 
blockchain... now we need to make sure that any CA-signed 
certs for Namecoin hostnames will be rejected if they don't 
match the blockchain.

● This turns out to be easier than the wizardry we needed for 
positive overrides.



  

Brief summary of HPKP

● HPKP tells a web browser to only accept certs for a given 
domain (possibly including subdomains) that match a whitelist of 
public key hashes.

● Hackers may want to intentionally MITM their own traffic without 
triggering HPKP errors – HPKP permits this by exempting user-
defined CA's.

● Hmm… the self-signed certs that we added for positive overrides 
are considered user-defined CA's for the purpose of HPKP. 



  

Abusing HPKP for our own ends

● What if we set the HPKP whitelist for “bit” (including all subdomains!) to 
a public key hash that no one has the private key for?

● All the user-defined positive override certs will still be valid.
● But all built-in CA's will no longer be trusted for Namecoin domains.
● Ryan suggested using 1/pi (scaled to 256 bits) as the nothing-up-my-

sleeve public key hash.
● Turns out that Chromium stores its HPKP database as a JSON file in 

the profile directory; it's trivially easy to automatically add the needed 
entry when we install Namecoin.



  



  

HPKP is disappearing from Chromium soon

● You might have heard Chromium is scrapping HPKP.
● For Windows, I think I can adapt the Windows key pinning 

features (e.g. EMET and Enterprise Certificate Pinning) to do 
negative overrides.
– This has the benefit of working for all of CryptoAPI, not just 

Chromium.

● For GNU/Linux... no idea.



  

Mozilla Cert Override API

● It looks like Mozilla is tentatively willing to merge a cert override 
API to WebExtensions.
– Subject to significant concerns about performance impact.

● I'm partway through coding a patch for this.
● Kudos to Mozilla for recognizing that this is an important use case.

– Also thanks to the Mozilla people who've answered questions I've had 
while implementing that patch – especially David Keeler, Andy McKay, 
and Andrew Swan.



  

Currently Released Code

● Chromium/Windows support is working and released.
– Go to https://www.namecoin.org , click “Downloads”, click “Beta 

Downloads”, download “ncdns Windows installer”.

● To test it, visit https://nf.bit (this is the Namecoin forum's 
Namecoin domain name).

https://www.namecoin.org/
https://nf.bit/


  

Please help us end the insanity

● If you work on web browsers or other TLS implementations...
– Please add API's for users to customize how TLS cert verification 

works.



  

Contact Me At...

● https://www.namecoin.org/ 

● OpenPGP: 
5174 0B7C 732D 572A 3140 4010 6605 55E1 F8F7 BF85

● jeremy@namecoin.org 

● Or just find me here at the Congress!  (The Namecoin logo on my shirt 
should help you find me.)
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